Differentiation in vitro of sympathetic cells from chick embryo sensory ganglia.

نویسندگان

  • D F Newgreen
  • R O Jones
چکیده

This study was carried out in order to determine what factors control the differentiation of certain neural crest cells in the chick embryo. Emphasis was placed on the morphologically and biochemically divergent sensory and sympathetic pathways of differentiation. Embryos were precisely stage according to Hamburger & Hamilton (1951) and it was observed that sensory ganglia with somites, explanted at stages 21-24, gave rise to cells showing formaldehyde-induced fluorescence in more than 25% of explants. These cells were identical in properties to the fluorescent cells of the sympathetic system of embryos of similar age, and appeared by 12 days in vitro. These fluorescent cells did not appear when somites and sensory ganglia explants were maintained separately. The incidence of fluorescent cells in combined explants was considerably reduced or absent when cultures were maintained for 7 days or less, or when the explants were obtained from stage 25-26 embryos. Furthermore, when neural tube was also included in the cultures, the appearance of fluorescent cells was markedly inhibited. The requirement for somitic tissue to induce fluorescent cells in combined explants can be repalced by forelimb-bud tissue. The origin of these cells and the factors that control their differentiation in vitro are discussed with reference to the neural crest origin of the sensory ganglion, and the possible conditions pertaining in vivo in this region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunology of nerve growth factor (NGF). The effect of NGF-antiserum on sensory ganglia in vitro

The properties of the 'Nerve Growth Factor' (NGF) have been described extensively (Levi-Montalcini & Booker, 1960; Levi-Montalcini, 1965) and reviewed recently (Levi-Montalcini, 1966). This factor is a protein of molecular weight about 130000 in its aggregated form (Varon, Nomura & Shooter, 1967, 1968) but may be active in lower molecular weight forms (Cohen, 1959, 1960; Banks et al. 1968). It ...

متن کامل

Immunology of nerve growth factor (NGF). The effect of NGF-antiserum on sensory ganglia in vitro

The properties of the 'Nerve Growth Factor' (NGF) have been described extensively (Levi-Montalcini & Booker, 1960; Levi-Montalcini, 1965) and reviewed recently (Levi-Montalcini, 1966). This factor is a protein of molecular weight about 130000 in its aggregated form (Varon, Nomura & Shooter, 1967, 1968) but may be active in lower molecular weight forms (Cohen, 1959, 1960; Banks et al. 1968). It ...

متن کامل

Immunology of nerve growth factor (NGF). The effect of NGF-antiserum on sensory ganglia in vitro

The properties of the 'Nerve Growth Factor' (NGF) have been described extensively (Levi-Montalcini & Booker, 1960; Levi-Montalcini, 1965) and reviewed recently (Levi-Montalcini, 1966). This factor is a protein of molecular weight about 130000 in its aggregated form (Varon, Nomura & Shooter, 1967, 1968) but may be active in lower molecular weight forms (Cohen, 1959, 1960; Banks et al. 1968). It ...

متن کامل

Immunology of nerve growth factor (NGF). The effect of NGF-antiserum on sensory ganglia in vitro.

The properties of the 'Nerve Growth Factor' (NGF) have been described extensively (Levi-Montalcini & Booker, 1960; Levi-Montalcini, 1965) and reviewed recently (Levi-Montalcini, 1966). This factor is a protein of molecular weight about 130000 in its aggregated form (Varon, Nomura & Shooter, 1967, 1968) but may be active in lower molecular weight forms (Cohen, 1959, 1960; Banks et al. 1968). It ...

متن کامل

Relationship between differentiation and terminal mitosis: chick sensory and ciliary neurons differentiate after terminal mitosis of precursor cells, whereas sympathetic neurons continue to divide after differentiation.

A population of undifferentiated cells has been characterized during the early development of nodose and ciliary ganglia. This population is defined by the absence of surface markers specific for neurons (tetanus toxin receptor, Q211 antigen) and for glial cells (O4 antigen). These undifferentiated cell populations were isolated from the ganglia and were shown to contain neuronal precursor cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of embryology and experimental morphology

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 1975